Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Acta Neuropathol Commun ; 12(1): 62, 2024 Apr 18.
Artigo em Inglês | MEDLINE | ID: mdl-38637827

RESUMO

BACKGROUND: Helsmoortel-Van der Aa syndrome is a neurodevelopmental disorder in which patients present with autism, intellectual disability, and frequent extra-neurological features such as feeding and gastrointestinal problems, visual impairments, and cardiac abnormalities. All patients exhibit heterozygous de novo nonsense or frameshift stop mutations in the Activity-Dependent Neuroprotective Protein (ADNP) gene, accounting for a prevalence of 0.2% of all autism cases worldwide. ADNP fulfills an essential chromatin remodeling function during brain development. In this study, we investigated the cerebellum of a died 6-year-old male patient with the c.1676dupA/p.His559Glnfs*3 ADNP mutation. RESULTS: The clinical presentation of the patient was representative of the Helsmoortel-Van der Aa syndrome. During his lifespan, he underwent two liver transplantations after which the child died because of multiple organ failure. An autopsy was performed, and various tissue samples were taken for further analysis. We performed a molecular characterization of the cerebellum, a brain region involved in motor coordination, known for its highest ADNP expression and compared it to an age-matched control subject. Importantly, epigenome-wide analysis of the ADNP cerebellum identified CpG methylation differences and expression of multiple pathways causing neurodevelopmental delay. Interestingly, transcription factor motif enrichment analysis of differentially methylated genes showed that the ADNP binding motif was the most significantly enriched. RNA sequencing of the autopsy brain further identified downregulation of the WNT signaling pathway and autophagy defects as possible causes of neurodevelopmental delay. Ultimately, label-free quantification mass spectrometry identified differentially expressed proteins involved in mitochondrial stress and sirtuin signaling pathways amongst others. Protein-protein interaction analysis further revealed a network including chromatin remodelers (ADNP, SMARCC2, HDAC2 and YY1), autophagy-related proteins (LAMP1, BECN1 and LC3) as well as a key histone deacetylating enzyme SIRT1, involved in mitochondrial energy metabolism. The protein interaction of ADNP with SIRT1 was further biochemically validated through the microtubule-end binding proteins EB1/EB3 by direct co-immunoprecipitation in mouse cerebellum, suggesting important mito-epigenetic crosstalk between chromatin remodeling and mitochondrial energy metabolism linked to autophagy stress responses. This is further supported by mitochondrial activity assays and stainings in patient-derived fibroblasts which suggest mitochondrial dysfunctions in the ADNP deficient human brain. CONCLUSION: This study forms the baseline clinical and molecular characterization of an ADNP autopsy cerebellum, providing novel insights in the disease mechanisms of the Helsmoortel-Van der Aa syndrome. By combining multi-omic and biochemical approaches, we identified a novel SIRT1-EB1/EB3-ADNP protein complex which may contribute to autophagic flux alterations and impaired mitochondrial metabolism in the Helsmoortel-Van der Aa syndrome and holds promise as a new therapeutic target.


Assuntos
Transtorno Autístico , Deficiência Intelectual , Masculino , Criança , Animais , Camundongos , Humanos , Deficiência Intelectual/genética , Transtorno Autístico/genética , Sirtuína 1/genética , Sirtuína 1/metabolismo , Genes Mitocondriais , Proteínas de Homeodomínio/genética , Cerebelo/metabolismo , Autopsia , Metilação , Proteínas do Tecido Nervoso/metabolismo , Proteínas de Ligação a DNA/metabolismo , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo
2.
Eur J Hum Genet ; 2024 Feb 29.
Artigo em Inglês | MEDLINE | ID: mdl-38424297

RESUMO

Mutations in ADNP result in Helsmoortel-Van der Aa syndrome. Here, we describe the first de novo intronic deletion, affecting the splice-acceptor site of the first coding ADNP exon in a five-year-old girl with developmental delay and autism. Whereas exome sequencing failed to detect the non-coding deletion, genome-wide CpG methylation analysis revealed an episignature suggestive of a Helsmoortel-Van der Aa syndrome diagnosis. This diagnosis was further supported by PhenoScore, a novel facial recognition software package. Subsequent whole-genome sequencing resolved the three-base pair ADNP deletion c.[-5-1_-4del] with transcriptome sequencing showing this deletion leads to skipping of exon 4. An N-terminal truncated protein could not be detected in transfection experiments with a mutant expression vector in HEK293T cells, strongly suggesting this is a first confirmed diagnosis exclusively due to haploinsufficiency of the ADNP gene. Pathway analysis of the methylome indicated differentially methylated genes involved in brain development, the cytoskeleton, locomotion, behavior, and muscle development. Along the same line, transcriptome analysis identified most of the differentially expressed genes as upregulated, in line with the hypomethylated CpG episignature and confirmed the involvement of the cytoskeleton and muscle development pathways that are also affected in patient cell lines and animal models. In conclusion, this novel mutation for the first time demonstrates that Helsmoortel-Van der Aa syndrome can be caused by a loss-of-function mutation. Moreover, our study elegantly illustrates the use of EpiSignatures, WGS and Phenoscore as novel complementary diagnostic tools in case a of negative WES result.

3.
Eur J Hum Genet ; 32(3): 317-323, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38273165

RESUMO

Here, we identified the causal mutation in the MRX20 family, one of the larger X-linked pedigrees that have been described in which no gene had been identified up till now. In 1995, the putative disease gene had been mapped to the pericentromeric region on the X chromosome, but no follow-up studies were performed. Here, whole exome sequencing (WES) on two affected and one unaffected family member revealed the c.195del/p.(Thr66ProfsTer55) mutation in the DLG3 gene (NM_021120.4) that segregated with the affected individuals in the family. DLG3 mutations have been consequently associated with intellectual disability and are a plausible explanation for the clinical abnormalities observed in this family. In addition, we identified two other variants co-segregating with the phenotype: a stop gain mutation in SSX1 (c.358G>T/p.(Glu120Ter)) (NM_001278691.2) and a nonsynonymous SNV in USP27X (c.56 A>G/p.(Gln19Arg)) (NM_001145073.3). RNA sequencing revealed 14 differentially expressed genes (p value < 0.1) in 7 affected males compared to 4 unaffected males of the family, including four genes known to be associated with neurological disorders. Thus, in this paper we identified the c.195del/p.(Thr66ProfsTer55) mutation in the DLG3 gene (NM_021120.4) as likely responsible for the phenotype observed in the MRX20 family.


Assuntos
Deficiência Intelectual , Deficiência Intelectual Ligada ao Cromossomo X , Masculino , Humanos , Deficiência Intelectual Ligada ao Cromossomo X/genética , Mutação , Deficiência Intelectual/genética , Códon sem Sentido , Fenótipo , Linhagem , Proteínas Nucleares/genética , Fatores de Transcrição/genética
4.
Eur J Hum Genet ; 31(8): 849-850, 2023 08.
Artigo em Inglês | MEDLINE | ID: mdl-37072552
5.
Environ Pollut ; 330: 121737, 2023 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-37121302

RESUMO

Environmental epigenetics has become a key research focus in global climate change studies and environmental pollutant investigations impacting aquatic ecosystems. Specifically, triggered by environmental stress conditions, intergenerational DNA methylation changes contribute to biological adaptive responses and survival of organisms to increase their tolerance towards these conditions. To critically review epigenetic analytical approaches in ecotoxicological aquatic research, we evaluated 78 publications reported over the past five years (2016-2021) that applied these methods to investigate the responses of aquatic organisms to environmental changes and pollution. The results show that DNA methylation appears to be the most robust epigenetic regulatory mark studied in aquatic animals. As such, multiple DNA methylation analysis methods have been developed in aquatic organisms, including enzyme restriction digestion-based and methyl-specific immunoprecipitation methods, and bisulfite (in)dependent sequencing strategies. In contrast, only a handful of aquatic studies, i.e. about 15%, have been focusing on histone variants and post-translational modifications due to the lack of species-specific affinity based immunological reagents, such as specific antibodies for chromatin immunoprecipitation applications. Similarly, ncRNA regulation remains as the least popular method used in the field of environmental epigenetics. Insights into the opportunities and challenges of the DNA methylation and histone variant analysis methods as well as decreasing costs of next generation sequencing approaches suggest that large-scale epigenetic environmental studies in model and non-model organisms will soon become available in the near future. Moreover, antibody-dependent and independent methods, such as mass spectrometry-based methods, can be used as an alternative epigenetic approach to characterize global changes of chromatin histone modifications in future aquatic research. Finally, a systematic guide for DNA methylation and histone variant methods is offered for ecotoxicological aquatic researchers to select the most relevant epigenetic analytical approach in their research.


Assuntos
Poluentes Ambientais , Histonas , Animais , Histonas/metabolismo , Ecossistema , Metilação de DNA , Epigênese Genética , Ecotoxicologia , Organismos Aquáticos/genética , Organismos Aquáticos/metabolismo
6.
Clin Epigenetics ; 15(1): 45, 2023 03 21.
Artigo em Inglês | MEDLINE | ID: mdl-36945042

RESUMO

BACKGROUND: Individuals affected with autism often suffer additional co-morbidities such as intellectual disability. The genes contributing to autism cluster on a relatively limited number of cellular pathways, including chromatin remodeling. However, limited information is available on how mutations in single genes can result in such pleiotropic clinical features in affected individuals. In this review, we summarize available information on one of the most frequently mutated genes in syndromic autism the Activity-Dependent Neuroprotective Protein (ADNP). RESULTS: Heterozygous and predicted loss-of-function ADNP mutations in individuals inevitably result in the clinical presentation with the Helsmoortel-Van der Aa syndrome, a frequent form of syndromic autism. ADNP, a zinc finger DNA-binding protein has a role in chromatin remodeling: The protein is associated with the pericentromeric protein HP1, the SWI/SNF core complex protein BRG1, and other members of this chromatin remodeling complex and, in murine stem cells, with the chromodomain helicase CHD4 in a ChAHP complex. ADNP has recently been shown to possess R-loop processing activity. In addition, many additional functions, for instance, in association with cytoskeletal proteins have been linked to ADNP. CONCLUSIONS: We here present an integrated evaluation of all current aspects of gene function and evaluate how abnormalities in chromatin remodeling might relate to the pleiotropic clinical presentation in individual"s" with Helsmoortel-Van der Aa syndrome.


Assuntos
Anormalidades Múltiplas , Transtorno Autístico , Deficiência Intelectual , Humanos , Animais , Camundongos , Transtorno Autístico/genética , Cromatina , Metilação de DNA , Proteínas de Homeodomínio/genética , Proteínas do Tecido Nervoso/genética , Proteínas do Tecido Nervoso/metabolismo , Deficiência Intelectual/genética , Anormalidades Múltiplas/genética
7.
Cells ; 11(8)2022 04 13.
Artigo em Inglês | MEDLINE | ID: mdl-35456004

RESUMO

Absence of the Fragile X Messenger Ribonucleoprotein 1 (FMRP) causes autism spectrum disorders and intellectual disability, commonly referred to as the Fragile X syndrome. FMRP is a negative regulator of protein translation and is essential for neuronal development and synapse formation. FMRP is a target for several post-translational modifications (PTMs) such as phosphorylation and methylation, which tightly regulate its cellular functions. Studies have indicated the involvement of FMRP in a multitude of cellular pathways, and an absence of FMRP was shown to affect several neurotransmitter receptors, for example, the GABA receptor and intracellular signaling molecules such as Akt, ERK, mTOR, and GSK3. Interestingly, many of these molecules function as protein kinases or phosphatases and thus are potentially amendable by pharmacological treatment. Several treatments acting on these kinase-phosphatase systems have been shown to be successful in preclinical models; however, they have failed to convincingly show any improvements in clinical trials. In this review, we highlight the different protein kinase and phosphatase studies that have been performed in the Fragile X syndrome. In our opinion, some of the paradoxical study conclusions are potentially due to the lack of insight into integrative kinase signaling networks in the disease. Quantitative proteome analyses have been performed in several models for the FXS to determine global molecular processes in FXS. However, only one phosphoproteomics study has been carried out in Fmr1 knock-out mouse embryonic fibroblasts, and it showed dysfunctional protein kinase and phosphatase signaling hubs in the brain. This suggests that the further use of phosphoproteomics approaches in Fragile X syndrome holds promise for identifying novel targets for kinase inhibitor therapies.


Assuntos
Transtorno Autístico , Síndrome do Cromossomo X Frágil , Animais , Fibroblastos/metabolismo , Proteína do X Frágil da Deficiência Intelectual/metabolismo , Proteína do X Frágil da Deficiência Intelectual/uso terapêutico , Síndrome do Cromossomo X Frágil/tratamento farmacológico , Quinase 3 da Glicogênio Sintase/metabolismo , Camundongos , Monoéster Fosfórico Hidrolases/metabolismo
8.
Macromol Rapid Commun ; 39(23): e1800678, 2018 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-30387221

RESUMO

Functional synthetic polymers are frequently explored for their use in the biomedical field. To fulfill the stringent demands of biodegradability and compatibility, the materials need to be versatile and tunable. Post-modification is often considered challenging for well-known degradable materials like poly(lactic acid) because of their chemical inertness. In this work a procedure is proposed to produce densely functionalized polymer particles using oligomeric precursors synthesized via the Morita-Baylis-Hillman reaction. This allows for a variety of post-modification reactions to serve bio-conjugation or tuning of the material properties. The particles are subjected to basic media and found to be degradable. Furthermore, cytotoxicity tests confirm good biocompatibility. Finally, as a proof of concept to demonstrate the versatility of the particles, post-modification reactions are carried out through the formation of imines.


Assuntos
Polímeros/síntese química , Animais , Materiais Biocompatíveis/síntese química , Materiais Biocompatíveis/química , Materiais Biocompatíveis/farmacologia , Linhagem Celular , Sobrevivência Celular/efeitos dos fármacos , Fibroblastos/efeitos dos fármacos , Células Endoteliais da Veia Umbilical Humana/efeitos dos fármacos , Humanos , Estrutura Molecular , Tamanho da Partícula , Polimerização , Polímeros/química , Polímeros/farmacologia , Propriedades de Superfície , Suínos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA